Adjusting confounders in ranking biomarkers: a model-based ROC approach
نویسندگان
چکیده
High-throughput studies have been extensively conducted in the research of complex human diseases. As a representative example, consider gene-expression studies where thousands of genes are profiled at the same time. An important objective of such studies is to rank the diagnostic accuracy of biomarkers (e.g. gene expressions) for predicting outcome variables while properly adjusting for confounding effects from low-dimensional clinical risk factors and environmental exposures. Existing approaches are often fully based on parametric or semi-parametric models and target evaluating estimation significance as opposed to diagnostic accuracy. Receiver operating characteristic (ROC) approaches can be employed to tackle this problem. However, existing ROC ranking methods focus on biomarkers only and ignore effects of confounders. In this article, we propose a model-based approach which ranks the diagnostic accuracy of biomarkers using ROC measures with a proper adjustment of confounding effects. To this end, three different methods for constructing the underlying regression models are investigated. Simulation study shows that the proposed methods can accurately identify biomarkers with additional diagnostic power beyond confounders. Analysis of two cancer gene-expression studies demonstrates that adjusting for confounders can lead to substantially different rankings of genes.
منابع مشابه
Application of adjusted-receiver operating characteristic curve analysis in combination of biomarkers for early detection of gestational diabetes mellitus
Introduction: In medical diagnostic field, evaluation of diagnostic accuracy of biomarkers or tests has always been a matter of concern. In some situations, one biomarker alone may not be sufficiently sensitive and specific for prediction of a disease. However, combining multiple biomarkers may lead to better diagnostic. The aim of this study was to assess the performance of combination of bio...
متن کاملA new approach based on data envelopment analysis with double frontiers for ranking the discovered rules from data mining
Data envelopment analysis (DEA) is a relatively new data oriented approach to evaluate performance of a set of peer entities called decision-making units (DMUs) that convert multiple inputs into multiple outputs. Within a relative limited period, DEA has been converted into a strong quantitative and analytical tool to measure and evaluate performance. In an article written by Toloo et al. (2009...
متن کاملIncreasing the accuracy of the classification of diabetic patients in terms of functional limitation using linear and nonlinear combinations of biomarkers: Ramp AUC method
The Area under the ROC Curve (AUC) is a common index for evaluating the ability of the biomarkers for classification. In practice, a single biomarker has limited classification ability, so to improve the classification performance, we are interested in combining biomarkers linearly and nonlinearly. In this study, while introducing various types of loss functions, the Ramp AUC method and some of...
متن کاملAn integrated simulation-DEA approach to multi-criteria ranking of scenarios for execution of operations in a construction project
The purpose of this study is to examine different scenarios for implementing operations in the pre-construction phase of a project, based on several competing criteria with different importance levels in order to achieve a more efficient execution plan. This paper presents a new framework that integrates discrete event simulation (DES) and data envelopment analysis (DEA) to rank different scena...
متن کاملGroups performance ranking based on inefficiency sharing
In the real world there are groups which composed of independent units. The conventional data envelopment analysis(DEA) model treats groups as units, ignoring the operation of individual units within each group.The current paper, investigates parallel system network approach proposed by Kao and modifies it. As modied Kao' model is more eligible to recognize ecient groups, a new ranking method i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Briefings in bioinformatics
دوره 13 5 شماره
صفحات -
تاریخ انتشار 2012